Group 1 (1A) - Alkali Metals

- All are soft, lustrous, reactive metals with low melting points.
- Reactivity increases down the group as ionization energy decreases.

Element	IP (kJ/mol)	m.p. (°C)	b.p. (°C)	$E^{\mathrm{o}}\left(\mathrm{V} ight)$
Li	Li 520		1347	-3.045
Na	496	97.8	881	-2.7109
K	419	63.2	766	-2.924
Rb	403	39.0	688	-2.925
Cs	376	28.5	705	-2.923
Fr	~400	27		~ -2.9

• Almost all compounds are ionic, except for some Li and Na organometallic compounds.

M^+	Li ⁺	Na ⁺	\mathbf{K}^+	Rb^+	Cs^+	$\mathrm{NH_4^+}$	Ag^+	Tl^+
<i>r</i> ⁺ (pm)	60	95	133	148	169	143	126	140

• Same charge and similar size of NH₄⁺, Ag⁺, and Tl⁺ result in similar compounds, often isomorphous with alkali metal analogs.

Electrolysis

• Reduction potentials are so negative that the metals cannot be obtained by electrolysis from aqueous solutions; water reduction occurs instead.

 $2H_2O + 2e^- \rightarrow H_2 + 2OH^ E^\circ = -0.42 \text{ V (pH 7)}$

• All can be obtained by electrolysis of their molten salts.

Cathode: $M^+ + e^- \rightarrow M$ Anode: $Cl^- \rightarrow \frac{1}{2}Cl_2 + e^-$

Reactivity

• All react with halogens, hydrogen, and water. $M + \frac{1}{2}X_2 \rightarrow MX$ X = F, Cl, Br, I $M + \frac{1}{2}H_2 \xrightarrow{\Delta} MH$ $M + H_2O \rightarrow MOH + \frac{1}{2}H_2$

• Only Li reacts with N₂(g) and is the only element that reacts with nitrogen at room temperature.

 $6Li + N_2 \xrightarrow{20-200^{\circ}C} 2Li_3N$

• When burned in air, alkali metals form either the oxide, peroxide, or superoxide as the principal product, depending on the size of the cation.

$M + O_2 \rightarrow$	Li ₂ O	Na ₂ O ₂	KO ₂	RbO ₂	CsO ₂
Anion	oxide	peroxide	superoxide	superoxide	superoxide

- Sodium also produces some Na₂O along with Na₂O₂.
- Peroxides contain O_2^{2-} ions, whose MO configuration is $(\sigma)^2(\pi)^4(\pi^*)^4$.
- Superoxides contain O_2^- ions, whose MO configuration is $(\sigma)^2(\pi)^4(\pi^*)^3$.
- The superoxide compounds are a rare example of a paramagnetic binary non-transition element compound.

Alkali Metals in NH₃(*l*)

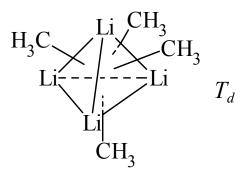
• All alkali metals dissolve in liquid ammonia to give blue solutions of solvated electrons.

M \longrightarrow M⁺[NH₃(*l*)] + e^{-} [NH₃(*l*)]

- With Fe³⁺ catalyst the amide is formed. $M + NH_3(l) \xrightarrow{Fe^{3+}} MNH_2 + \frac{1}{2}H_2$
 - An analogous reaction occurs with RNH₂ amines.
- LiNH₂ uniquely decomposes to the immide on heating. $2\text{LiNH}_2 \xrightarrow{\Delta} \text{Li}_2\text{NH} + \text{NH}_3$
 - This is an example of *first-element uniqueness*.

First-Element Uniqueness

- First elements of the main groups tend to show some unique chemistry not shown by the heavier elements of the group.
- Lithium is the smallest of the alkali metals and has the highest charge density.
 - Lithium compounds tend to be more covalent than comparable alkali metal compounds.
- Thermal decomposition of ionic nitrates gives nitrites, but more covalent lithium nitrate decomposes to the oxide, similar to lead(II) nitrate.


NaNO₃ $\xrightarrow{\Delta}$ NaNO₂ + $\frac{1}{2}O_2$ 2LiNO₃ $\xrightarrow{\Delta}$ Li₂O + N₂O₄ + $\frac{1}{2}O_2$ Pb(NO₃)₂ $\xrightarrow{\Delta}$ PbO + N₂O₄ + $\frac{1}{2}O_2$

Group 1 Organometallic Compounds

- Li and Na organometallic compounds are important in organic synthesis.
 - Lithium organometallic compounds are more covalent and more soluble in organic solvents.
- LiR compounds are formed by reacting organic halides with metallic lithium.

RCl + 2Li
$$\rightarrow$$
 LiR + LiCl

- LiR compounds are spontaneously flammable in air, but addition of LiBr or LiI causes formation of stable complexes. $\text{LiR} + n\text{LiBr} \rightarrow \text{LiR}\cdot(\text{LiBr})_n \quad n = 1 - 6$
- LiCH₃ and LiC₂H₅ are tetramers with a tetrahedral structure.

Group 2 (2A) Elements

• Compared to group 1 elements, these are harder, have higher melting points and boiling points, and are less reactive.

Element	$\frac{IP_1 + IP_2}{(kJ/mol)}$	m.p. (°C)	b.p. (°C)	<i>E</i> ° (V)
Be	2656.6	1287	~2500	-1.847
Mg	2184.4	649	1105	-2.372
Ca	1735.2	839	1494	-2.868
Sr	1613.8	768	1381	-2.889
Ba	1468.2	727	~1850	-2.912
Ra	1488.5	~700	~1700	-2.8

- All can be obtained by electrolysis of their fused chlorides, but LiCl must be added to BeCl₂ to increase conductivity.
- Cations are much smaller than group 1 cations, and with a +2 charge have much higher charge densities.

M ²⁺	Be ²⁺	Mg^{2+}	Ca ²⁺	Sr ²⁺	Ba ²⁺	Ra ²⁺	Eu ²⁺	Pb^{2+}
r^{2+} (pm)	31	65	99	113	135	140	112	120

- Eu²⁺ and Pb²⁺ have similar size and charge density to Sr²⁺ and Ba²⁺ and form similar compounds with similar chemistry.
- Radioactive ⁹⁰Sr (β^- , $t_{\frac{1}{2}} = 28.1$ yr) from fallout is a problem because it can substitute for Ca (e.g., in milk).

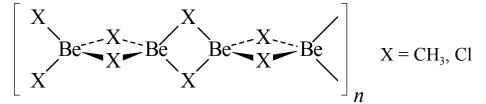
Charge Density and Group 2 Chemistry

- Be²⁺ has high charge density, which makes its compounds appreciably covalent.
- High charge density of Be²⁺ is largely responsible for its firstelement unique chemistry.
- Because beryllium's chemistry is so different from the other group 2 elements, the term "alkaline earth" is usually restricted to Mg, Ca, Sr, Ba, Ra.
- Mg²⁺ has a similar charge density to Li⁺, so the two elements show some similar chemistry (e.g., tendency to form useful organometallic compounds).
 - The similar chemistries of Li and Mg are an example of a *diagonal relationship*, also seen with other diagonally related period 2 and period 3 elements.

Group 2 Elements – Beryllium

- Beryllium is a light, brittle metal obtained from the mineral beryl.
 - Because of its low absorptivity, Be is used as a window material in x-ray tubes.
 - Added in small amounts to Cu, Ni, etc. it adds strength and corrosion resistance.
 - Be metal is fairly inert in air due to a BeO coating.
- All beryllium compounds, except certain minerals, are highly toxic and require extraordinary precautions when used!
- Non-toxic minerals:
 - Beryl, $3BeO \cdot Al_2O_3 \cdot 6SiO_2 = Be_3Al_2(SiO_3)_6 gem forms emerald and aquamarine.$
 - Phenacite $-Be_2SiO_4$

Group 2 Elements - The Alkaline Earths


- Ca and Mg are the 5th and 6th most abundant elements by mass in the earth's crust.
 - Found together in dolomite, Ca(OH)₂·Mg(OH)₂.
 - Ca is found as gypsum, CaSO₄·2H₂O; calcite, aragonite, chalk, CaCO₃; and many other minerals.
- Sr and Ba are much less abundant.
 - Found as their sulfates and carbonates.
 - Sr and Eu compounds and Ba and Ra compounds are often found together, due to similarities in sizes.
- All isotopes of Ra are radioactive.
 - Most stable isotope is ²²⁶Ra (α , $t_{\frac{1}{2}} = 1600$ yr)
 - First isolated by Pierre and Marie Curie from uranium ore pitchblende in 1898.
- Metal reactivity with water increases with atomic weight. $M + 2H_2O \rightarrow M(OH)_2 + H_2$
 - Mg does not react appreciably except in acid. $Mg + 2H_3O^+ \rightarrow Mg^{2+} + H_2 + 2H_2O$
 - Ca does not react unless freshly polished, owing to a protective coating of CaO.

Beryllium Aqueous Chemistry

- Be²⁺ has such high charge density that its hydrated ions are acidic, and both oxide and hydroxide are amphoteric.
- Be²⁺(*aq*) acts as a polyprotic acid. Be(H₂O)₄²⁺ + H₂O \Rightarrow Be(H₂O)₃OH⁺ + H₃O⁺ $K_a \approx 10^{-5}$ Be(H₂O)₃OH⁺ + H₂O \Rightarrow Be(H₂O)₂(OH)₂ + H₃O⁺ $K_a \approx 10^{-14}$ Be(H₂O)₂(OH)₂ + H₂O \Rightarrow Be(H₂O)(OH)₃⁻ + H₃O⁺ Be(H₂O)(OH)₃⁻ + H₂O \Rightarrow Be(OH)₄²⁻ + H₃O⁺
 - These equilibria are complicated by a tendency to polymerize. $3Be^{2+}(aq) + 6H_2O \Rightarrow (BeOH)_3^{3+} + 3H_3O^+$ $K = 4.6 \times 10^8$
- Amphoteric character of BeO is evident by its hydrolysis to give Be(OH)₂, typical of a metal oxide. BeO + H₂O → Be(OH)₂
- Strong coordination by water tends to make most Be²⁺ salts tetrahydrates; e.g., BeSO₄·4H₂O.

Covalent Beryllium Compounds

- Covalent compounds of Be tend to be tetrahedrally coordinated; e.g., $BeCl_2(OEt_2)_2$, BeF_4^{2-} .
- Although BeCl₂ and Be(CH₃)₂ exist as discreet, linear molecules in the gas phase, in the solid they are polymerized as tetrahedrally coordinated Be atoms forming infinite chains.

- In $Be(CH_3)_2$ the Be–C–Be bridges are 3c-2e bonds.
- In BeCl₂ the Be–Cl–Be bridges are normal 2c-2e bonds.
- Beryllium alkyls are best made by reacting the metal with mercury dialkyl, followed by vacuum sublimation/distillation. Hg(CH₃)₂ + Be → Be(CH₃)₂ + Hg
 - Beryllium alkyls are liquids or solids of high reactivity that spontaneously flame in air and violently hydrolyze in water.
- Beryllium aryls are made by reacting a lithium aryl in a hydrocarbon with BeCl₂ in diethyl ether, in which the byproduct LiCl is insoluble.

 $2\text{LiC}_6\text{H}_5 + \text{BeCl}_2 \rightarrow \text{Be}(\text{C}_6\text{H}_5)_2 + 2 \text{ LiCl} \downarrow$

 Given the toxicity, organoberyllium compounds are of little practical value in most laboratory settings.

Alkaline Earth Oxygen Compounds

- When burned, all give the normal oxide. $M + \frac{1}{2}O \rightarrow MO$
- Mg is used in incendiary bombs, because the reaction is very exothermic (-602 kJ/mol) and it is difficult to extinguish.
 - Mg will continue to burn in a CO₂ atmosphere.

 $2Mg + CO_2 \rightarrow 2MgO + C$

• SrO and BaO can be converted to the peroxides with heat and pressure.

$$2BaO + O_2 \xrightarrow{P} 2BaO_2$$

• MgO is relatively inert, but the others readily form hydroxides and carbonates.

$MO + H_2O \rightarrow M(OH)_2$	M ≠ Mg
$MO + CO_2 \rightarrow MCO_3$	M ≠ Mg

- In base, $Mg^{2+}(aq)$ solutions precipitate relatively insoluble $Mg(OH)_2$ ($K_{sp} = 1.1 \times 10^{-11}$).
- Solubility of the other hydroxides increases down the group. $Ca(OH)_2 < Sr(OH)_2 < Ba(OH)_2 < Ra(OH)_2$ sl. soluble soluble soluble soluble soluble $K_{sp} = 1.3 \times 10^{-6}$
- All the carbonates are insoluble

Important Ionic Calcium Compounds

•	Many simple ionic compounds of calcium have been					
	commercially	commercially important throughout history.				
	CaCO ₃	limestone, chalk, marble, calcite, aragonite				
	CaSO ₄ anhydrite					
	$CaSO_4 \cdot 2H_2O$	gypsum				
	CaO	quicklime				
	Ca(OH) ₂	slaked lime				

• Plaster of Paris is the hemihydrate of CaSO₄, which forms gypsum on setting.

 $2CaSO_4 \cdot \frac{1}{2}H_2O + 3H_2O \Rightarrow 2CaSO_4 \cdot 2H_2O$

- Hydration of quicklime is the basis of some traditional mortars.
 - Initial formation of slaked lime is followed by "curing", which forms CaCO₃.

slaking of lime $CaO + H_2O \xrightarrow{\Delta} Ca(OH)_2$ curing $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

- Portland cement is made by roasting CaO with clay, forming a complex mixture of silicates and aluminates.
- A suspension of Ca(OH)₂ (solubility ≈ 1 g/L hot H₂O), called "lime water" is reactive to acid gases and has been used as a test for such.

 $\begin{aligned} & \operatorname{Ca}(\operatorname{OH})_2(aq) + \operatorname{CO}_2(g) \to \operatorname{Ca}\operatorname{CO}_3(s) + \operatorname{H}_2\operatorname{O}(l) \\ & \operatorname{Ca}(\operatorname{OH})_2(aq) + \operatorname{SO}_2(g) \to \operatorname{Ca}\operatorname{SO}_3(s) + \operatorname{H}_2\operatorname{O}(l) \\ & \operatorname{Ca}\operatorname{SO}_3(s) + \frac{1}{2}\operatorname{O}_2(g) \to \operatorname{Ca}\operatorname{SO}_4(s) \end{aligned}$

Calcite Cycle

• The calcite cycle, which uses CaCO₃ from oyster shells, has long been an important industrial process for obtaining useful calcium compounds, acetylene, and ammonia.

$$CaCO_{3} \xrightarrow{750^{\circ}C} CaO + CO_{2}$$
 calcination

$$CaO + 3C \xrightarrow{\Delta} CaC_{2} + CO$$

$$CaC_{2} + 2H_{2}O \rightarrow Ca(OH)_{2} + C_{2}H_{2}$$

$$CaC_{2} + N_{2} \xrightarrow{1000^{\circ}C} CaCN_{2} + C$$
 cyanamide reaction

$$CaCN_{2} + 3H_{2}O \rightarrow CaCO_{3} + 2NH_{3}$$

• CaCO₃ formed with the hydrolysis of CaCN₂ is recycled for use in the first step.

Organometallic Compounds

- Both Be and Mg form organometallic compounds, but only the Mg compounds are of practical importance, given the toxicity of Be.
- Tendency of Mg to form organometallic compounds is similar to that of Li (diagonal relationship).
- The Grignard reagents are the best known magnesium organometallic compounds.

$$Mg + RX \xrightarrow{Et_2O} RMgX \xrightarrow{evap.} RMgX \cdot 2Et_2O$$